大发平台官网平台_大发平台开奖结果
大发平台网投2022-07-29

谋划育人用人新战略 开启高质量发展新征程******

  作者:王稼琼(北京交通大学校长)

  党的二十大擘画光明未来,引领时代航程,指导实践伟业。“高质量发展是全面建设社会主义现代化国家的首要任务”“坚持为党育人、为国育才,全面提高人才自主培养质量,着力造就拔尖创新人才,聚天下英才而用之”,报告中的这些观点论断,为新时代高校汇聚英才,实现高质量发展指明了前进方向,提供了基本遵循。

  作为一所特色鲜明的“双一流”高校,北京交通大学始终把人才培养放在首要位置,擦亮鲜明底色,传承红色基因,在固根基、补短板、强特色、提质量上锐意进取,奋力拼搏。新时代新征程,北京交通大学要深刻认识和领悟党的二十大精神,在全面学习、全面把握、全面落实上下足功夫、下实功夫,时刻以习近平新时代中国特色社会主义思想为指导,以特色鲜明世界一流大学建设为主线,精准对接国家战略需求,主动谋划育人用人新战略,积极探索汇聚英才新路径,自信自强,守正创新,努力在全面建设社会主义现代化国家新征程中贡献更多育人成就和拔尖人才,走出一条人才引领高质量发展的特色道路。

  深化立德树人,突出价值引领新优势

  习近平总书记在党的二十大报告中强调,全面贯彻党的教育方针,落实立德树人根本任务,培养德智体美劳全面发展的社会主义建设者和接班人。

  我们要提高政治站位,强化责任担当。坚持和加强党对高校的全面领导,坚持社会主义办学方向,以立德树人为己任,赓续红色血脉,传承奋斗精神,深入开展社会主义核心价值观宣传教育,深化理想信念教育、爱国主义教育、中华优秀传统文化教育,持续推进思政课程和课程思政改革创新,充分发挥高校思想政治教育的价值引领功能。

  坚持“五育并举”,优化评价机制。深入推进学生评价机制改革,秉持以德为先、能力为重的基本原则,不断创新综合动态评价的方式方法,充分重视学生发展水平的差异性,因材施教,有效促进学生德智体美劳全面发展。

  提升师德师风,增强榜样效应。以抓顶层设计、抓决策部署、抓组织协调落实主体责任,以学理论、学“四史”、学楷模把稳思想航标,以讲师德、讲校史、讲警示铸就交大师魂,加快形成尊师重教新风尚。

  新时代新征程要求我们必须主动对标科教兴国战略,形成价值培育塑造的“导引器”和“增幅器”,坚决打好铸魂育人阵地战,为教育强国建设贡献交大智慧和交大力量。

  聚焦国之大者,发挥学科特色新优势

  习近平总书记在党的二十大报告中指出,培养造就大批德才兼备的高素质人才,是国家和民族长远发展大计。

  我们要充分彰显学科特色优势,完善学科整体布局。紧紧围绕前沿加强学科交叉融合和一流学科群建设,形成具有良好学科生态的相互支撑、相互协调、可持续发展的学科体系和结构,为人才培养建立坚实稳固的学科基础。

  深化教育教学模式改革,构建一流人才培养体系。在打造学科优势的基础上,深入实施“本研贯通、学科融通、产学相通、国际互通”的“四通”教育教学新模式,加强质量保障体系建设,完善人才培养体系,努力培养拔尖创新型、卓越复合型、行业创造型人才,全面提升人才培养能力。

  积极培育创新文化,营造浓郁创新氛围。大力弘扬新时代科学家精神,引导和激励科技工作者弘扬“饮水思源、爱国荣校”的优良传统,争当科技创新排头兵,主动肩负起投身创新驱动发展战略,建设交通强国、科技强国的光荣使命。

  通过聚焦“国之大者”,加快形成人才孕育成长的“孵化器”和“助推器”,坚决打赢人才培养主动战。

  着眼长远大计,彰显人才育引新优势

  习近平总书记在党的二十大报告中指出,“必须坚持科技是第一生产力、人才是第一资源、创新是第一动力”“我们要坚持教育优先发展、科技自立自强、人才引领驱动,加快建设教育强国、科技强国、人才强国”。

  我们要坚持“党管人才”,加强统筹谋划。始终心怀人才建设这一长远大计,主动作为,率先布局,持续推进人才强校战略,全方位培养、引进和用好人才。坚持“广纳群贤、人尽其才”,以“规模适度、结构优化、富有活力”为目标,打造优秀人才的“蓄水池”和“磁吸石”。

  坚持“育引并举”,丰富载体平台。大力创新“育引并举”的方式方法,构建“校—院—学科”三级联动的人才引育体系,不断健全有利于人才成长与聚集的体制机制和环境氛围。进一步拓宽视野,充分发挥行业特色优势,促进校企合作深度融合,创设校内外相互联动、国内外相互交流的运行机制和协调机制,为教师搭建起业务培训、素质提升的高端平台。

  坚持“系统管理”,打造优质团队。从系统观念出发,不断创新人才管理工作,进一步加强人才激励机制、服务保障机制、考核评价机制建设,着力锻造锤炼一支能够支持特色鲜明世界一流大学建设、支撑引领行业发展、发挥交大优势特色、服务国家战略需求的新时代高素质专业化人才队伍,加快建设交通领域世界一流的重要人才中心和创新高地。

  推动高校高质量发展,必须不断优化人才育引的“驱动器”和“调节器”,打响队伍建设攻坚战,以高素质人才助力新时代人才强国建设。

  《光明日报》( 2023年01月09日 05版)

大发平台官网平台

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

中国网客户端

国家重点新闻网站,9语种权威发布

大发平台地图